Abstract

LiNixMnyCo1−x−yO2 compounds (NMC) are layered oxides widely used in commercial lithium-ion batteries at the positive electrode. Nevertheless surface reactivity of this material is still not well known. As a first step, based on first principle calculations, this study deals with the electronic properties and the surface reactivity of LiMO2 (M=Co, Ni, Mn) compounds, considering the behavior of each transition metal separately in the same R3̅mα-NaFeO2-type structure, the one of LiCoO2 and NMC. For each compound, after a brief description of the bare slab electronic properties, we explored the acido-basic and redox properties of the (110) and (104) surfaces by considering the adsorption of a gaseous probe. The chemisorption of SO2 produces both sulfite or sulfate species associated respectively to an acido-basic or a reduction process. These processes are localized on the transition metals of the first two layers of the surface. Although sulfate species are globally favored, a different behavior is obtained depending on both the surface and the transition metal considered. We conclude with a simple scheme which describes the reduction processes on the both surfaces in terms of formal oxidation degrees of transition metals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.