Abstract

The change of atom configuration in hexagonal AlN, caused by native point defects (N and Al vacancies, N and Al antisites, N and Al interstitials), are calculated firstly by plan-wave pseudopotential method with the generalized gradient approximation in the frame of density functional theory, and the most stable structure are obtained. Then the formation energy of each kind of native point defect is calculated, by which the possibilities of the six kinds of native defects to be formed during crystal growth are analyzed. Finally, the defect energy levels responding to every kind of native point defect and their electron occupancy are analyzed from the aspect of density of states. The results show that all the native defects form very deep energy levels in the band gap except N vacancy, and foreign impurities are needed to realize n- or p-type AlN. The values of defect energy levels obtained will be helpful in ascertaining the luminescence mechanism of some AlN non-band-edge emissions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.