Abstract

First principle calculations based on density functional theory is performed to analyze cation (Ag+) conductivity in polyethylene oxide (PEO) based systems. The relaxed polymer structures are simulated, bond lengths and the charge density distributions around interacting atoms provides the strong bonding nature between higher electro-negative oxygen and silver atoms. Projected density of states and density of states explain s-p hybridization between orbitals, to increase in cation concentration in polymer systems, to reduce in the forbidden energy gap and to increase the ionic conductivity due to gradual increase the number of dispersing AgI molecules in polymer systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.