Abstract

Spin-polarized density functional theory has been used to study the effects of vacancy defects on the magnetic properties of graphene. Structural optimization shows that introducing a carbon vacancy cluster into a graphene sheet changes the spatial distribution of the neighbor atoms, particularly those located around the vacancy. From spin-polarized DOS and LPDOS calculations, we find that only vacancies containing unpaired electrons show magnetism. These results lead us to formulate a relation between the vacancy-induced magnetic moment and the size and shape of the vacancy clusters in graphene sheet.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call