Abstract

AbstractFluorescence imaging in the second near‐infrared II (NIR‐II) window is opening up new possibilities in bioimaging due to its low scattering rate within the tissue. The integration of 2D materials with NIR‐II fluorescence will enable the development of multifunctional imaging probes. However, there are very few 2D materials that can fluoresce in the NIR‐II range. Monolayer WSe2 is a potential 2D material, but its photoluminescence (PL) around 790 nm is still far from the NIR‐II range due to its bandgap of 1.54 eV. In this study, it is investigated the electronic structures, dielectric functions, and PL spectra for Te, I, and Cr‐doped monolayer WSe2, as well as W and S vacant monolayer WSe2. Most of the defected monolayer WSe2 remain semiconductors, except for a few configurations exhibiting metallic properties after making vacancies. Among the monolayer WSe2 under investigation, the Cr‐doped WSe2 performs the best, exhibiting a strong PL peak in NIR‐II with a decreased bandgap around 1.0 eV. As increasing Cr concentration, the peak shifts further toward the red end of the spectrum due to an enhancement of p–d transition. The results provide a useful guideline for material synthesis applied in NIR‐II bioimaging and other biophysics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.