Abstract

The adsorption and desorption behaviors of ammonia on TaC(0001) surface are studied by employing spin-polarized density function theory calculations. The surface energy calculation results show that the TaC (0001) terminating with Ta is the most stable surface. According to the optimized structural and energetic properties, it is found that NH<sub>3</sub> prefers to adsorb on the top site, whereas NH<sub>2</sub>, H prefer to adsorb on the triple hcp site and NH, N prefer to stay on the triple fcc site. In addition, three transition states are found for analyzing the mechanism of dehydrogenation of NH<sub>3</sub>, and the N recombination reaction is also considered. The results show that the desorption of nitrogen atoms is the rate-determining step in the overall reaction. Finally, in order to further elucidate the mechanism of NH<sub>3</sub> adsorption and dissociation on the surface of Ta-TaC, the electronic structure of the most stable adsorption position is analyzed from the perspective of charge density distribution and electron density of states. The results of electronic structure calculation show that NH<sub>3</sub> molecule is adsorbed on the surface through the mixture of 2p<i><sub>z</sub></i> orbital of N atom and <inline-formula><tex-math id="Z-20211229103116-1">\begin{document}$ 5{\rm d}_{z^2} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1-20210400_Z-20211229103116-1.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1-20210400_Z-20211229103116-1.png"/></alternatives></inline-formula> orbital of substrate Ta. With the progress of dehydrogenation, the charge transfer phenomenon becomes more and more serious. The charge transfer between adsorbate and substrate plays an important role in accelerating NH<sub>3</sub> dehydrogenation catalytic process.

Highlights

  • 众所周知, NH3 在气相中的电子结构可以表示为 (s2a1)2(s1e)4(n3a1)2, 其中 2a1 轨道主要由 N原子的 2s 轨道和 H 原子的 1s 轨道形成, 1e 轨道由 N 原 子的 2Px 及 2Py 轨道与 H 原子的 1s 轨道混合而 成, 3a1 轨道由 N 原子的 2pz 轨道组成[20,21]. 从图 7(a) 可以看到, 在能量范围为–20—0 eV 之间出现 3 个 不同峰, 分别代表 s2a1, s1e 和 n3a1 轨道. 从图 7(a)— 7(d) 中可以看出, 在吸附前后及脱氢过程中 2a1 和 1e 轨道所对应的峰形貌变化不大, 说明 2a1 和 1e 轨道同表面态之间相互作用弱, 对 NH3 及其 片段的吸附贡献小. 同气相 NH3 相比 (Fig.7(a)), (b)

  • 4) 电子结构分析结果表明, NH3 分子及其片 段通过其 N 原子的 2pz 轨道与底物 Ta 的 5dz2轨 道混合吸附于表面

Read more

Summary

Introduction

采用自旋极化密度泛函理论 (DFT) 并结合周期平板模型的方法, 研究了 NH3 在 TaC 表面的吸附和分解 反应机理. 表面能计算结果显示, 以 Ta 为终止的 TaC(0001) 面为最稳定的表面; NH3 分子通过其孤对电子优 先吸附在顶位 top 位, 而 NH2 和 H 最稳定吸附位置为三重 hcp 位, NH 和 N 吸附在三重 fcc 位. 关键词:密度泛函理论, NH3, TaC, 吸附 PACS:71.15.Mb, 68.43.Bc, 68.35.B–, 88.30.M– 对于 NH3 分子, 在尺寸为 15 Å × 15 Å × 15 Å的大单元格中计算得到的键长 r (N—H) = 1.021 Å, 键角 q(H—N—H) = 106.6°. 根据非化学计量比表面的表面自由能定义, 计 算 TaC 表面的表面能 [13]

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.