Abstract

HfO2-based resistive random access memory (RRAM) takes advantage of oxygen vacancy (V o) defects in its principle of operation. Since the change in resistivity of the material is controlled by the level of oxygen deficiency in the material, it is significantly important to study the performance of oxygen vacancies in formation of conductive filament. Excluding effects of the applied voltage, the Vienna ab initio simulation package (VASP) is used to investigate the orientation and concentration mechanism of the oxygen vacancies based on the first principle. The optimal value of crystal orientation [010] is identified by means of the calculated isosurface plots of partial charge density, formation energy, highest isosurface value, migration barrier, and energy band of oxygen vacancy in ten established orientation systems. It will effectively influence the SET voltage, forming voltage, and the ON/OFF ratio of the device. Based on the results of orientation dependence, different concentration models are established along crystal orientation [010]. The performance of proposed concentration models is evaluated and analyzed in this paper. The film is weakly conductive for the samples deposited in a mixture with less than 4.167at.% of V o contents, and the resistive switching (RS) phenomenon cannot be observed in this case. The RS behavior improves with an increase in the V o contents from 4.167at.% to 6.25at.%; nonetheless, it is found difficult to switch to a stable state. However, a higher V o concentration shows a more favorable uniformity and stability for HfO2-based RRAM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.