Abstract
Intramolecular singlet fission and triplet-triplet annihilation (TTA) has been experimentally observed and reported. However, problems remain in theoretically accounting for the corresponding intramolecular electronic couplings and their rates. We used the fragment excitation difference (FED) scheme to calculate the coupling with states from restricted active-space spin-flip configuration interaction. We investigated three covalently linked pentacene dimers via a phenyl group in an ortho-, meta-, and para-arrangement. The singlet fission and TTA couplings were enhanced when two chromophores were covalently linked. With the Fermi golden rule, both the estimated singlet fission and TTA rates were in line with the experimental results. For systems with significant singlet-fission coupling, charge-transfer components were observed in the excited states involved, and charge-transfer states were also seen within 1 eV above the singlet excited states. Our approach allows for an analysis of through-bond versus through-space singlet fission in the full electronic wave functions. The FED scheme is useful for calculating intramolecular singlet-fission and TTA couplings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.