Abstract

The magnetic properties of (ZnS)n clusters (n=1−16) due to 3d transition metals have been investigated using spin polarized density functional theory. The transition metals are more stable at Zn site than at the S site in (ZnS)n clusters. The binding energy of (ZnS)n clusters increases significantly on doping with transition metal indicating enhanced structural stability of the doped (ZnS)n clusters. All 3d transition metals induced magnetic moment of order 5μB–1μB per atom in all (ZnS)n clusters. The magnetic moment is mainly localized on the TM dopant. The magnetic moment increases gradually with the increase in number of electrons in 3d orbital which is in accordance with Hund's rule till Mn and decreases thereafter. All 3d TMs retain their atomic magnetic moment in ZnS clusters of all sizes. Ti, V, Cr and Mn interact anti-ferromagnetically with the surrounding S and Zn, whereas Sc, Fe, Co, Ni and Cu interact with ferromagnetic interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call