Abstract

AbstractThe electronic structure and magnetic properties of Mn doped zinc blende cadmium sulfide Cd1-xMnxS (x = 6.25 %) have been studied using spin-polarized density functional theory within the framework of Generalized Gradient Approximation (GGA), its further corrections including Hubbard U interactions (GGA + U) and a model for exchange and correlation potential Tran Blaha modified Becke-Johnson (TB-mBJ). Ferromagnetic interactions have been observed between Mn atoms via S atom due to strong p-d hybridization. The magnetic moments on Mn and its neighboring atoms have also been studied in detail using different charge analysis techniques. It has been observed that p-d hybridization reduced the value of local magnetic moment of Mn in comparison to its free space charge value and produced small local magnetic moments on the nonmagnetic S and Cd host sites. The magnetocrystalline anisotropy in [1 0 0] and [1 1 1] directions as well as exchange splitting parameters Noα and Noβ have been analyzed to confirm that ferromagnetism exists. We conclude that the ferromagnetic phase in Mn-doped CdS is not stable in “near” configuration but it is stable for “far” configuration. Mn doped CdS is a p-type semiconductor and the d-states at the top of the valence band edge give a very useful material for photoluminescence and magneto-optical devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.