Abstract

The first-principles calculation with a newly developed high-efficient computing method was firstly applied to prediction of critical velocity for Cu/Al cold-spray bonding without any empirical parameters. An excellent agreement between predicted values and experimental values was obtained. The bonding mechanism of cold-spray was clarified by analyzing the atomic response in displacement during cold-spray process. A mixed bonding mechanism of adiabatic shear instability and pressure-release was confirmed. The computing method could be popularized to extensive applications in critical velocity prediction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.