Abstract

A novel first principle based control oriented model of a gasoline engine is proposed which also carries diagnostic capabilities. Unlike existing control oriented models, the formulated model reflects dynamics of the faultless as well as faulty engine with high fidelity. In the proposed model, the torque production subsystem is obtained by integration of further two subsystems that is model of a single cylinder torque producing mechanism and an analytical gasoline engine cylinder pressure model. Model of a single cylinder torque producing mechanism is derived using constrained equation of motion (EOM) in Lagrangian mechanics. While cylinder pressure is evaluated using a closed form parametric analytical gasoline engine cylinder pressure model. Novel attributes of the proposed model include minimal usage of empirical relations and relatively wider region of model validity. Additionally, the model provides model based description of crankshaft angular speed fluctuations and tension in the rigid bodies. Capacity of the model to describe the system dynamics under fault conditions is elaborated with case study of an intermittent misfire condition. Model attains new capabilities based on the said novel attributes. The model is successfully validated against experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call