Abstract
We study the electronic and optical properties of strained single-layer SnC in the density functional theory (DFT) and tight-binding models. We extract the hopping parameters tight-binding Hamiltonian for monolayer SnC by considering the DFT results as a reference point. We also examine the phonon spectra in the scheme of DFT, and analyze the bonding character by using Mulliken bond population. Moreover, we show that the band gap modulation and transition from indirect to direct band gap in the compressive strained SnC. The applied tensile strain reduces the band gap and eventually the semiconductor to semimetal transition occurs for 7.5% of tensile strain. In the framework of tight-binding model, the effect of spin-orbit coupling on energy spectrum are also discussed. We indicate that while tensile strain closes the band gap, spin-orbit gap is still present which is order of ∼40 meV at the Γ point. The substrate effect is modeled through a staggered sub-lattice potential in the tight-binding approximation. The optical properties of pristine and strained SnC are also examined in the DFT scheme. We present the modulation of real and imaginary parts of dielectric function under applied strain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.