Abstract
Acetoxylation of ethylene over supported palladium and palladium/gold is a well established commercial route for the formation of vinyl acetate. While the overall reaction chemistry for the synthesis of vinyl acetate was uncovered some thirty years ago (Eur. Chem. News 1967; World Pet. Cong. Proc. 1968, U.S. Patent 1967 & 1977), the active catalytic surface ensembles, key reaction intermediates, and mechanism are still poorly understood. Issues such as the oxidation state of the active centers (Pd 0 vs Pd 2+), particle ensemble size (small clusters versus large particles, rate-determining elementary steps, secondary decomposition routes, and the structural and/or electronic role of Au, have yet to be resolved. Herein, we employ first-principle quantum chemical techniques to model a series of proposed elementary steps representative of vinyl acetate synthesis. Calculations using palladium and oxidized palladium particles of varying size provide a fundamental understanding of the elementary physicochemical steps in the oxidative coupling of ethylene and acetic acid in route to the formation of vinyl acetate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.