Abstract

PURPOSEA pointwise encoding time reduction with radial acquisition (PETRA) sequence was optimized to detect empty catheters in interstitial (HDR) brachytherapy with clinically acceptable spatial accuracy for the first time. Image quality and catheter detectability were assessed in phantoms, and the feasibility of PETRA's clinical implementation was assessed on a gynecological cancer patient. METHODS AND RESULTSEmpty catheters embedded in a gelatin phantom displayed positive signal on PETRA and more accurate cross-sections than on clinically employed T2-weighted sequences, differing by 0.4 mm on average from their nominal 2 mm diameter. PETRA presented minimal susceptibility differences and a symmetric metal artifact, contrary to the clinical sequences. The PETRA-CT catheter tip position differences assessed by a treatment planning system (TPS) were < 1 mm. PETRA also detected an interstitial template with empty catheters penetrating a poultry phantom and fused very well with CT. Interstitial catheter positional difference between PETRA and CT images was < 1 mm on average, increasing with distance from isocenter. All interstitial catheters and the employed interstitial template were detected on PETRA images of an endometrial adenocarcinoma patient. Empty needles were traceable using a TPS, with higher spatial resolution and more favorable contrast than on T2-weighted images used for contouring. A treatment plan could be produced by combining information from PETRA for catheter detection and from T2-weighted images for tumor and organs delineation. CONCLUSIONSPETRA detected successfully and accurately interstitial catheters in phantoms. Its first clinical implementation shows a potential for MR-only treatment planning in interstitial HDR brachytherapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call