Abstract

To demonstrate an involvement of ATP-sensitive potassium (K(ATP)) channel-independent pathways in the first phase of glucose-stimulated insulin secretion (GSIS) from pancreatic beta cells, the time course of GSIS from MIN6 cells was analyzed at 30-s sample intervals. GSIS was biphasic with the first phase being observed 120 to 390 s after glucose addition, peaking at 180 s, and with a shoulder at 240 to 330 s. Both 10 microM diazoxide and 3 microM verapamil completely inhibited tolbutamide- or glibenclamide-induced insulin secretion and suppressed the peak of the first phase of GSIS, but did not result in complete suppression. The shoulder following the peak was suppressed by 1 muM dantrolene. The peak, but not shoulder, disappeared under the extracellular Ca2+-free condition. A significant amount of insulin secretion remained even in the combined presence of verapamil and dantrolene. The Na+ channel blocker tetrodotoxin (30 nM) nearly completely inhibited the first phase release. These results suggest that the first phase of GSIS from MIN6 cells depends on both Ca2+-dependent and -independent mechanisms. The former mechanism includes the extracellular Ca2+ influx via L-type voltage-dependent calcium channel and intracellular Ca2+ release from endoplasmic reticulum via ryanodine receptors, and the latter mechanism involves the pathways associated with Na+ channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.