Abstract

ABSTRACTFirst Person is a series of interviews with the first authors of a selection of papers published in Disease Models & Mechanisms (DMM), helping early-career researchers promote themselves alongside their papers. Francesco Chiani and Tiziana Orsini are co-first authors on ‘Functional loss of Ccdc151 leads to hydrocephalus in a mouse model of primary ciliary dyskinesia’, published in DMM. Francesco is a researcher (PhD) in the lab of Fabio Mammano (Italian IMPC/INFRANFRONTIER delegate) at the Institute of Biochemistry and Cell Biology – Italian National Research Council, Monterotondo, Rome, Italy, where he is interested in engineering and studying novel mouse models for human disease with the aim to understand gene function in normal physiology and pathological conditions. Tiziana is a CNR Technologist in the lab of Fabio Mammano, studying the function of genes in normal conditions and during disease development in mouse models by applying the micro-computed tomography (micro-CT) imaging technique.

Highlights

  • To understand the function of the Ccdc151 gene, we have engineered a mouse model in which it is deleted

  • Francesco Chiani and Tiziana Orsini are co-first authors on ‘Functional loss of Ccdc151 leads to hydrocephalus in a mouse model of primary ciliary dyskinesia’, published in Disease Models & Mechanisms (DMM)

  • How would you explain the main findings of your paper to non-scientific family and friends? F.C. & T.O: Mutation in the Ccdc151 gene leads to primary ciliary dyskinesia (PCD) in patients

Read more

Summary

Introduction

To understand the function of the Ccdc151 gene, we have engineered a mouse model in which it is deleted. Francesco Chiani and Tiziana Orsini are co-first authors on ‘Functional loss of Ccdc151 leads to hydrocephalus in a mouse model of primary ciliary dyskinesia’, published in DMM. Francesco is a researcher (PhD) in the lab of Fabio Mammano (Italian IMPC/INFRANFRONTIER delegate) at the Institute of Biochemistry and Cell Biology – Italian National Research Council, Monterotondo, Rome, Italy, where he is interested in engineering and studying novel mouse models for human disease with the aim to understand gene function in normal physiology and pathological conditions.

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call