Abstract
AbstractFirst-passage times (FPTs) of two-dimensional Brownian motion have many applications in quantitative finance. However, despite various attempts since the 1960s, there are few analytical solutions available. By solving a nonhomogeneous modified Helmholtz equation in an infinite wedge, we find analytical solutions for the Laplace transforms of FPTs; these Laplace transforms can be inverted numerically. The FPT problems lead to a class of bivariate exponential distributions which are absolute continuous but do not have the memoryless property. We also prove that the density of the absolute difference of FPTs tends to ∞ if and only if the correlation between the two Brownian motions is positive.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.