Abstract
Long transient dynamics in ecological models are characterized by extended periods in one state or regime before an eventual, and often abrupt, transition. One mechanism leading to long transient dynamics is the presence of ghost attractors, states where system dynamics slow down and the system lingers before eventually transitioning to the true attractor. This transition results solely from system dynamics rather than external factors. This paper investigates the dynamics of a classical herbivore-grazer model with the potential for ghost attractors or alternative stable states. We propose an intuitive threshold for first passage time analysis applicable to both bistable and ghost attractor regimes. By formulating the first passage time problem as a backward Kolmogorov equation, we examine how the mean first passage time changes as parameters are varied from the ghost attractor regime to the bistable one, through a saddle-node bifurcation. Our results reveal that the mean and variance of first passage times vary smoothly across the bifurcation threshold, eliminating the deterministic distinction between ghost attractors and bistable regimes. This work suggests that first passage time analysis can be an informative way to classify the length of a long transient. A better understanding of the duration of long transients may contribute to greater ecological understanding and more effective environmental management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.