Abstract

We study the crossing time statistic of diffusing point particles between the two ends of expanding and narrowing two-dimensional conical channels under a transverse external gravitational field. The theoretical expression for the mean first-passage time for such a system is derived under the assumption that the axial diffusion in a two-dimensional channel of smoothly varying geometry can be approximately described as a one-dimensional diffusion in an entropic potential with position-dependent effective diffusivity in terms of the modified Fick-Jacobs equation. We analyze the channel crossing dynamics in terms of the mean first-passage time, combining our analytical results with extensive two-dimensional Brownian dynamics simulations, allowing us to find the range of applicability of the one-dimensional approximation. We find that the effective particle diffusivity decreases with increasing amplitude of the external potential. Remarkably, the mean first-passage time for crossing the channel is shown to assume a minimum at finite values of the potential amplitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.