Abstract
In the threshold growth model on an integer lattice, the occupied set grows according to a simple local rule: a site becomes occupied iff it sees at least a threshold number of already occupied sites in its prescribed neighborhood. In this paper, we analyze the behavior of two-dimensional threshold growth dynamics started from a sparse Bernoulli density of occupied sites. We explain how nucleation of rare centers, invariant shapes and interaction between growing droplets influence the first passage time in the supercritical case. We also briefly address scaling laws for the critical case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.