Abstract
Most processes examined from a standpoint of the first-passage problem are modeled by linear diffusion equations. Here, we consider the non-linear diffusion equation in which diffusivity is power-law dependent on the concentration/probability density and explore its fundamental first-passage properties. Depending on the value of the power-law exponent, we demonstrate the exact and approximate expressions for the survival probability and the first-passage time distribution along with their asymptotic representations. These results refer to the freely and harmonically trapped diffusing particle. While in the former case the mean first-passage time is divergent, albeit the first-passage time distribution is normalized to unity, it is finite in the latter. To support this result, we derive the exact formula for the mean first-passage time to the target prescribed in the minimum of the harmonic potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.