Abstract
We investigate the first passage time (FPT) distribution for accelerating subdiffusion governed by the modified fractional diffusion equation which has a secondary fractional time derivative acting on a diffusion operator. For the FPT problem subject to absorbing barrier condition, we obtain exact analytical expressions for the FPT distribution as well as its Laplace transform in the semi-infinite interval. Most of the results have been derived by using the Laplace transform, the Fourier Cosine transform, the Mellin transform and the properties of the Fox H-function. In contrast to the Laplace transform of the FPT distribution which can be expressed elegantly and neatly, the exact solution for the FPT distribution requires an infinite series of Fox H-functions instead of a single Fox H-function. Numerical result reveals that the crossover between the two distinct scaling regimes is apparent only when the discrepancy between the two diffusion exponents becomes more pronounced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.