Abstract

We introduce the first passage set (FPS) of constant level $-a$ of the two-dimensional continuum Gaussian free field (GFF) on finitely connected domains. Informally, it is the set of points in the domain that can be connected to the boundary by a path on which the GFF does not go below $-a$. It is, thus, the two-dimensional analogue of the first hitting time of $-a$ by a one-dimensional Brownian motion. We provide an axiomatic characterization of the FPS, a continuum construction using level lines, and study its properties: it is a fractal set of zero Lebesgue measure and Minkowski dimension 2 that is coupled with the GFF $\Phi$ as a local set $A$ so that $\Phi+a$ restricted to $A$ is a positive measure. One of the highlights of this paper is identifying this measure as a Minkowski content measure in the non-integer gauge $r \mapsto \vert\log(r)\vert^{1/2}r^{2}$, by using Gaussian multiplicative chaos theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.