Abstract

The first order system least squares method for the Stokes equation with discontinuous viscosity and singular force along the interface is proposed and analyzed. First, interface conditions are derived. By introducing a physical meaningful variable such as the velocity gradient, the Stokes equation transformed into a first order system of equations. Then the continuous and discrete norm least squares functionals using Legendre and Chebyshev weights for the first order system are defined. We showed that continuous and discrete homogeneous least squares functionals are equivalent to appropriate product norms. The spectral convergence of the proposed method is given. A numerical example is provided to support the method and its analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.