Abstract

The Gaussian linear wave model, which has been successfully used in ocean engineering for more than half a century, is well understood, and there exist both exact theory and efficient numerical algorithms for calculation of the statistical distribution of wave characteristics. It is well suited for moderate seastates and deep water conditions. One drawback, however, is its lack of realism under extreme or shallow water conditions, in particular, its symmetry. It produces waves, which are stochastically symmetric, both in the vertical and in the horizontal direction. From that point of view, the Lagrangian wave model, which describes the horizontal and vertical movements of individual water particles, is more realistic. Its stochastic properties are much less known and have not been studied until quite recently. This paper presents a version of the first order stochastic Lagrange model that is able to generate irregular waves with both crest-trough and front-back asymmetries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.