Abstract
We study the order of maximizers in linear conic programming (CP) as well as stability issues related to this. We do this by taking a semi-infinite view on conic programs: a linear conic problem can be formulated as a special instance of a linear semi-infinite program (SIP), for which characterizations of the stability of first order maximizers are well-known. However, conic problems are highly special SIPs, and therefore these general SIP-results are not valid for CP. We discuss the differences between CP and general SIP concerning the structure and results for stability of first order maximizers, and we present necessary and sufficient conditions for the stability of first order maximizers in CP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.