Abstract

This work outlines the elastic bending analysis of transversely loaded shear-deformable rectilinear orthotropic composite annular plates. The load condition discussed in the paper, along with the displacement constraints, are derived by the composite bolted joints theoretical reference model – this analytical solution is a necessary effort for the obtainment of a custom finite element capable of simulating this kind of joints with high accuracy and limited computational effort. Firstly, the constitutive equations of the family of plate under investigation are obtained in the framework of the First-order Shear Deformation Plate Theory. The described methodology is founded on the application of the virtual displacements principle and its solution is performed according to Ritz method after the writing of displacement field approximation functions fulfilling the boundary conditions. The three unknown displacement components are obtained for different case studies concerning rectilinear orthotropic composite annular plates featuring various slenderness ratios, shape factors and stacking sequences. The outcomes comparison with FE numerical solutions evidences a high degree of fidelity. The presented results demonstrate that this enhanced version of the Ritz analytical solution method, which accounts for the composite plate shear deformability, can be more effectively employed to describe the displacement field of composite plates connected by a bolted joint in the area surrounding the bolt.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call