Abstract

The ground-state energy and properties of any many-electron atom or molecule may be rigorously computed by variationally computing the two-electron reduced density matrix rather than the many-electron wavefunction. While early attempts fifty years ago to compute the ground-state 2-RDM directly were stymied because the 2-RDM must be constrained to represent an N -electron wavefunction, recent advances in theory and optimization have made direct computation of the 2-RDM possible. The constraints in the variational calculation of the 2-RDM require a special optimization known as a semidefinite programming. Development of first-order semidefinite programming for the 2-RDM method has reduced the computational costs of the calculation by orders of magnitude [Mazziotti, Phys. Rev. Lett. 93 (2004) 213001]. The variational 2-RDM approach is effective at capturing multi-reference correlation effects that are especially important at non-equilibrium molecular geometries. Recent work on 2-RDM methods will be reviewed and illustrated with particular emphasis on the importance of advances in large-scale semidefinite programming.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.