Abstract

The generic problem of extracting information on intrinsic particle properties from the whole class of interacting magnetic fine particle systems is a long standing and difficult inverse problem. As an example, the Switching Field Distribution (SFD) is an important quantity in the characterization of magnetic systems, and its determination in many technological applications, such as recording media, is especially challenging. Techniques such as the first order reversal curve (FORC) methods, were developed to extract the SFD from macroscopic measurements. However, all methods rely on separating the contributions to the measurements of the intrinsic SFD and the extrinsic effects of magnetostatic and exchange interactions. We investigate the underlying physics of the FORC method by applying it to the output predictions of a kinetic Monte-Carlo model with known input parameters. We show that the FORC method is valid only in cases of weak spatial correlation of the magnetisation and suggest a more general approach.

Highlights

  • In this work we consider the exemplar problem of identification of the switching field distribution (SFD) in magnetic particulate and granular systems

  • Our study presents the analysis of the accuracy and the limitations of hysteron-based analysis of the experimental data obtained by the first order reversal curves (FORC) method for quantitative determination of the SFD

  • In terms of the analysis, similar to Pike et al.[16] we make the distinction between the raw FORC data, the FORC diagram and the usual interpretation of the FORC data based on the Preisach model

Read more

Summary

Introduction

In this work we consider the exemplar problem of identification of the switching field distribution (SFD) in magnetic particulate and granular systems. The SFD carries information about the intrinsic conditions for magnetisation reversal of individual magnetic particles and, for example, is a crucial characteristic determining the quality of high density magnetic media for current and future hard disk technologies, such as based on the bit patterned media or granular materials considered for HAMR5,6. This problem is especially challenging due to the strength and complexity of the interparticle interactions. By evaluating the inter-granular magnetic correlation function, we demonstrate the direct relationship between the emergence of magnetic correlations and the failure of the FORC methodology to determine the SFD, and establish the criteria for the validity of the FORC method as a quantitative approach for accurate identification of the SFD in HDD magnetic media

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call