Abstract

The differential equations of planetary theory are solved analytically to first order for the two-dimensional case, using only Jacobian elliptic functions and the elliptic integrals of the first and second kind. This choice of functions leads to several new features potentially of importance for planetary theory. The first of these is that the solutions do not require the expansion of the reciprocal of the distance between two planets, even for those variables which depend on two angular arguments. A second result is that the solution is free from small divisors with the exception of two special resonances. In fact, not only are the solutions for resonant orbits free from small divisors, the perturbations for all variables are expressible in closed form. A subset of the resonant orbits maintains this form and in addition has the remarkable feature that the first order perturbations are purely periodic; they contain no secular terms. A solution for the 1∶3 resonance case is given as an example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.