Abstract

A statistical equilibrium theory based on the Lagrangian of the rotating shallow water equations is presented with applications to cooperative properties of large-scale features in the Jovian atmosphere when the flows have pronounced hemispherical asymmetry. Large planetary spin is shown to play a significant role in the orientation asymmetry or energy gap between cyclonic and anticyclonic vorticity distributions. This suggests that angular momentum is the key physical factor behind the statistical preference for a cyclonic vorticity distribution at high levels of flow energy. Simulation results reported here show that for a range of high energy-to-enstrophy ratios at Jupiter’s parameters, a broad-based cyclonic vortex forms in one of the hemisphere with few other coherent spots. Evidence that this cooperative phenomenon arise from a first-order phase transition is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.