Abstract
Gödel-type metrics that are homogeneous in both space and time remain, like the Schwarzschild metric, consistent within Chern–Simons modified gravity; this is true in both the non-dynamical and dynamical frameworks, each of which involves an additional pseudoscalar field coupled to the Pontryagin density. In this paper, we consider stationary first-order perturbations to these metrics in the non-dynamical framework. Under certain assumptions we find analytical solutions to the perturbed field equations. The solutions of the first-order field equations break the translational and cylindrical symmetries of the unperturbed metrics. The effective potential controlling planar geodesic orbits is also affected by the perturbation parameter, which changes the equilibrium radii for the orbits of both massive particles and massless photons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.