Abstract

Considering orthogonal Stiefel manifolds as constraint manifolds, we give an explicit description of a set of local coordinates that also generate a basis for the tangent space in any point of the orthogonal Stiefel manifolds. We show how this construction depends on the choice of a submatrix of full rank. Embedding a gradient vector field on an orthogonal Stiefel manifold in the ambient space, we give explicit necessary and sufficient conditions for a critical point of a cost function defined on such manifolds. We explicitly describe the steepest descent algorithm on the orthogonal Stiefel manifold using the ambient coordinates and not the local coordinates of the manifold. We point out the dependence of the recurrence sequence that defines the algorithm on the choice of a full rank submatrix. We illustrate the algorithm in the case of Brockett cost functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.