Abstract
This study extends what had been a purely numerical model that used influence-factor matrices to relate the stump stresses to prosthesis loads for unilateral, below/knee amputees. Previously published influence-factor matrices are now factored into a coefficient matrix times the inverse of a stump geometry matrix. Using actual stump parameters, new information is learned about how the resistive moment of the stump balances the flexion-extension moment of the prosthesis and why certain normal stresses reach a maximum during a specific portion of the stance phase of the prosthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.