Abstract
We investigate the one-loop effect of new charged scalar bosons on the Higgs potential at finite temperatures in the supersymmetric standard model with four Higgs doublet chiral superfields as well as a pair of charged singlet chiral superfields. In this model, the mass of the lightest Higgs boson h is determined only by the D-term in the Higgs potential at the tree-level, while the triple Higgs boson coupling for hhh can receive a significant radiative correction due to nondecoupling one-loop contributions of the additional charged scalar bosons. We find that the same nondecoupling mechanism can also contribute to realize stronger first order electroweak phase transition than that in the minimal supersymmetric standard model, which is definitely required for a successful scenario of electroweak baryogenesis. Therefore, this model can be a new candidate for a model in which the baryon asymmetry of the Universe is explained at the electroweak scale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.