Abstract

An imaging spectrometer combining an entrance slit, a Fabry-Perot interferometer (FPI) and a plane transmission grating is presented. Each unit of the entrance slit is imaged on a separate column of the detector and different wavelengths are dispersed across different rows of that column. To cover the full spectral range, the FPI needs to scan N steps. For each unit of the entrance slit, one spectrum is obtained at each FPI spacing position and a total of N spectra are sequentially obtained to constitute a high resolution spectrum. The combination of imaging, interferometry and dispersive spectrometry enables the instrument to obtain spatial information and high-resolution spectral information of a broadband source in the ultraviolet-visible spectral region. First-order approximations of system performance are given. The unique design of the optics will make the instrument compact and suitable for high-spectral-resolution broadband ultraviolet-visible spectral imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.