Abstract

We study first-order definitions of graph properties over the vocabulary consisting of the adjacency and order relations. We compare logical complexities of subgraph isomorphism in terms of the minimum quantifier depth in two settings: with and without the order relation. We prove that, for pattern-trees, it is at least (roughly) two times smaller in the former case. We find the minimum quantifier depths of <-sentences defining subgraph isomorphism for all pattern graphs with at most 4 vertices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.