Abstract

The originally proposed first-order correlation orbital method (L. Adamowicz and R.J. Bartlett, J. Chem. Phys. 86 (1987) 6314) has been extended in order to include the MCSCF zeroth-order wave function. The present method is based on the perturbation theory with the zeroth-order Hamiltonian suggested by Andersson (J. Phys. Chem. 94 (1990) 5483). In the present work we restrict our consideration to the simplest case, i.e. the two-electron/two-orbital MCSCF reference wave function. The procedure is tested on the model system — lithium dimer — at a variety of interatomic distances. The results show that the calculated second-order correlation energy as well as the value of the second-order Hylleraas functional in the reduced space of the first-order correlation orbitals behave correctly upon dissociation of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.