Abstract

We show that the on-shell path integral for asymptotically flat Euclidean spacetimes can be given in the first-order formulation of general relativity, without assuming the boundary to be isometrically embedded in Euclidean space and without adding infinite counter-terms. For illustrative examples of our approach, we evaluate the first-order action for the four-dimensional Euclidean Schwarzschild and NUT-charged spacetimes to derive the corresponding on-shell partition functions, and show that the correct thermodynamic quantities for the solutions are reproduced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.