Abstract

Abstract. Results are presented from the first two active experimental campaigns undertaken by the new SPEAR (Space Plasma Exploration by Active Radar) high-power system that has recently become operational on Spitzbergen, in the Svalbard archipelago. SPEAR's high-power beam was used to excite artificial enhancements in the backscatter detected by the ESR (EISCAT Svalbard Radar) parallel to the geomagnetic field, as well as coherent backscatter detected by both of the CUTLASS (Co-operative UK Twin Located Auroral Sounding System) coherent radars, in directions orthogonal to the geomagnetic field. The ESR detected both enhanced ion-lines as well as enhanced plasma-lines, that were sustained for the whole period when SPEAR was transmitting ordinary mode radio waves, at frequencies below the maximum F-region plasma frequency. On a number of occasions, coherent backscatter was also observed in one or in both of the CUTLASS radars, in beams that intersected the heated volume. Although the levels of enhanced backscatter varied considerably in time, it appeared that ion-line, plasma-line and coherent backscatter were all excited simultaneously, in contrast to what has typically been reported at Tromsø, during EISCAT heater operations. A description of the technical and operational aspects of the new SPEAR system is also included.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.