Abstract

Using the density matrix renormalization group method, we determine the phase diagram of the Bose-Hubbard model with local two- and three-body interactions, describing polar molecules in one-dimensional optical lattices. The difference in the block von Neumann entropy with different system sizes was used to establish the critical points. We found that the quantum critical point position increases with the three-body interaction. We show that the model studied is in the same universality class as the model with pure two-body interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call