Abstract

BackgroundCanine dirofilariasis due to Dirofilaria immitis is known to be endemic in continental Portugal. However, information about the transmitting mosquito species is still scarce, with only Culex theileri identified to date, albeit with L1-2, through dissection. This study was carried out to investigate the potential vectors of Dirofilaria spp. in continental Portugal.MethodsMosquitoes were collected in three distinct seasons (Summer, Autumn and Spring), 2011–2013, in three districts. CDC traps and indoor resting collections were carried out in the vicinity of kennels. Mosquitoes were kept under controlled conditions for 7 days to allow the development of larval stages of Dirofilaria spp.. DNA extraction was performed separately for both head+thorax and abdomen in order to differentiate infective and infected specimens, respectively, in pools, grouped according to the species and collection site (1–40 specimen parts/pool), and examined by PCR using pan-filarial specific primers. Mosquito densities were compared using non-parametric tests. Dirofilaria development units (DDU) were estimated.ResultsIn total, 9156 female mosquitoes, from 11 different species, were captured. Mosquito densities varied among the 3 districts, according to capture method, and were generally higher in the second year of collections. From 5866 specimens screened by PCR, 23 head+thorax and 41 abdomens pools, corresponding to 54 mosquitoes were found positive for D. immitis DNA. These belonged to 5 species: Culex (Cux) theileri (estimated rate of infection (ERI)=0.71%), Cx. (Cux) pipiens f. pipiens and f. molestus (ERI=0.5%), Anopheles (Ano) maculipennis s.l. (ERI=3.12%), including An. (Ano) atroparvus, Aedes (Och) caspius (ERI=3.73%) and Ae. (Och) detritus s.l. (ERI=4.39%). All but Cx. pipiens, had at least one infective specimen. No D. repens infected specimens were found. Infection rates were: 3.21% in Coimbra, 1.22% in Setúbal and 0.54% in Santarém. DDU were at least 117/year in the study period.ConclusionsCulex theileri, Cx. pipiens, An. maculipennis s.l. An. atroparvus, Ae.caspius and Ae. detritus s.l. were identified as potential vectors of D. immitis in three districts of Portugal, from Spring to Autumn, in 5 of the 6 collection dates in 2011–2013. Implications for transmission, in the context of climate changes, and need for prophylactic measures, are discussed.

Highlights

  • Canine dirofilariasis due to Dirofilaria immitis is known to be endemic in continental Portugal

  • Dirofilariasis is a mosquito-borne cosmopolitan metazoonotic disease caused by different species of the nematode genus Dirofilaria (Spirurida: Onchocercidae) [1], namely Dirofilaria immitis (Leidy, 1856), canine or dog heartworm, and Dirofilaria repens Railliet& Henry, 1911

  • The purpose of this study was to identify potential vectors of Dirofilaria spp. by using a polymerase chain reaction (PCR) with species specific primers on mosquito populations from those three districts of continental Portugal, Coimbra, Santarém and Setúbal, collected in the vicinity of kennels being surveyed for canine dirofilariasis (CD), in a multidisciplinary project, for a period of two consecutive years

Read more

Summary

Introduction

Canine dirofilariasis due to Dirofilaria immitis is known to be endemic in continental Portugal. Dirofilariasis is a mosquito-borne cosmopolitan metazoonotic disease caused by different species of the nematode genus Dirofilaria (Spirurida: Onchocercidae) [1], namely Dirofilaria immitis (Leidy, 1856), canine or dog heartworm, and Dirofilaria repens Railliet& Henry, 1911. The natural hosts of Dirofilaria spp. are dogs and wild members of the genus Canis, canine dirofilariasis (CD) infections may occur in a variety of species, including cats, other wild mammals and humans [2,3]. Dirofilaria spp. are transmitted by several mosquito species belonging to a wide range of genera in different parts of the world, such as Culex, Aedes and Anopheles [5]. Environmental factors, namely climatic and ecological, may affect the life cycle parameters of both the mosquito vector and filarial parasites

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call