Abstract
Concentrations of black carbon (BC), organic carbon (OC), and total suspended particulate matter (TSP) were simultaneously assessed in urban, rural and residential areas in Jeddah city for one year from January to December 2017. It was aimed in the present study to provide information about the spatial and seasonal variability of these aerosol species in Jeddah, and insight into sources, processes and effects of meteorological conditions. To the best of our knowledge, this is the first study investigating the variability of carbonaceous aerosols (OC and BC) in Saudi Arabia. The average concentrations of OC, BC, and TSP varied spatially and temporally. The annual average concentrations of OC, BC, and TSP were 134.05, 7.16, and 569.41 μg m−3 and 34.32, 5.14, and 240.64 μg m−3 and 10.67, 4.39 and 101.31 μg m−3 in the urban, residential and rural areas, respectively. Moreover, there was a clear seasonal variation in the concentration of carbonaceous aerosols; the highest concentrations were recorded in February and September, while the lowest concentrations of OC were recorded during April, May and August in the urban, residential and rural sites, respectively. Nevertheless, the lowest concentrations of BC were recorded during March in the urban and residential sites and during November in the rural site. The relative concentrations of OC and BC to the TSP were relatively high, and they have a significant correlation with prevalent wind speed (−0.636, and −0.581 in the urban area), (−0.539 and −0.511 in the residential area), and (−0.508 and −0.501 in the rural area), respectively. The marked differences in the concentrations of BC and OC were reflected on OC/BC ratio, which is a good representative of different source types. This preliminary study showed that the potential local sources were emissions from traffic (fossil fuel), biomass burning, anthropogenic activities (e.g. car drifting and outdoor cooking), and industrial activities. The present study suggest the presence of highly inefficient combustion sources and highlight the need for the regulation of such emissions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.