Abstract
This article reports on a search for dark matter pair production in association with a Higgs boson decaying to a pair of bottom quarks, using data from $20.3 fb^{-1}$ of $pp$ collisions at a center-of-mass energy of 8 TeV collected by the ATLAS detector at the LHC. The decay of the Higgs boson is reconstructed as a high-momentum $b\bar{b}$ system with either a pair of small-radius jets, or a single large-radius jet with substructure. The observed data are found to be consistent with the expected Standard Model backgrounds. Model-independent upper limits are placed on the visible cross-sections for events with a Higgs boson decaying into $b\bar{b}$ and large missing transverse momentum with thresholds ranging from 150 GeV to 400 GeV. Results are interpreted using a simplified model with a $Z^\prime$ gauge boson decaying into different Higgs bosons predicted in a two-Higgs-doublet model, of which the heavy pseudoscalar Higgs decays into a pair of dark matter particles. Exclusion limits are also presented for the mass scales of various effective field theory operators that describe the interaction between dark matter particles and the Higgs boson.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.