Abstract

The sensitivity of state-of-the-art superconducting far-infrared detectors is such that astronomical observations at these wavelengths are limited by photon noise from the astronomical source unless a method of restricting the spectral bandpass is employed. One such method is to use a high resolution Fabry-Perot interferometer (FPI) in conjunction with a lower resolution, post-dispersing system, such as a grating spectrometer. The resonant wavelength of an FPI is typically tuned by changing the spacing or medium between the parallel reflecting plates of the etalon. We previously reported on a novel design in which the wavelength is tuned by scanning the angle of incidence, which simplifies the cryo-mechanical design, actuation and metrology. Here we present first light results from the realized instrument.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call