Abstract

The anatase TiO2(101) surface and its interaction with water is an important topic in oxide surface chemistry. Firstly, it benchmarks the properties of the majority facet of TiO2 nanoparticles and, secondly, there is a controversy as to whether the water molecule adsorbs intact or deprotonates. We have addressed the adsorption of water on anatase TiO2(101) by synchrotron radiation photoelectron spectroscopy. Three two-dimensional water structures are found during growth at different temperatures: at 100 K, a metastable structure forms with no hydrogen bonding between the water molecules. In accord with prior literature, we assign this phase to chains of disordered molecules. Growth 160 K results in a metastable structure with expressed hydrogen bonding between the water molecules. At 190 K, the water molecules become disordered as the thermal energy is too high and hence the hydrogen bonds break. The result is a structure with isolated monomers. Partial dissociation is observed for all three growths, with the molecular state only slightly favored in energy (20–40 meV) over the dissociated state. Heating of a thick film leads to more dissociation compared to a bilayer, when formed at 100 K. Thus, extending the water network facilitates proton transport and hence dissociation. The results reconcile apparent conflicting experimental results previously obtained by scanning tunneling microscopy (STM) and core level photoelectron spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.