Abstract

The first jump approximation of a pure jump Lévy process, which converges to the Lévy process in the Skorokhod topology in probability, is generalised to a multivariate setting and an infinite time horizon. It is shown that it can generally be used to obtain “first jump approximations” of Lévy-driven stochastic differential equations, by establishing that it has uniformly controlled variations. Applying this general result to multivariate exponential continuous time GARCH processes of order (1, 1), it is shown that there exists a sequence of piecewise constant processes determined by multivariate exponential GARCH(1, 1) processes in discrete time which converge in probability in the Skorokhod topology to the continuous time process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.