Abstract

W7-AS has recently been equipped with ten open divertor modules in order to experimentally evaluate the island divertor concept. First results are reported in this paper. The new divertors enable access to a new NBI-heated, very high density (up to n̄e = 3.5 × 1020 m-3) operating regime with promising confinement properties. The energy confinement time increases steeply with density and then saturates. In contrast, the particle and impurity confinement times decrease with increasing density. This allows full density control and quasi-steady-state operation also under conditions of partial detachment from the divertor targets. Radiated power fractions are low to moderate in attached regimes and reach up to about 90% in detachment scenarios. The radiation always stays peaked at the edge. The extremely high densities necessitated the development of non-standard heating techniques for central heating. For the first time efficient heating of an NBI target plasma by electron Bernstein waves (140 GHz, second harmonic) is achieved. In addition, this heating scenario enables fine tuning of the upstream boundary conditions for divertor operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.