Abstract

Nitrogen (N) fractionation is used as a tool to search for a link between the chemical history of the Solar System and star-forming regions. A large variation of $^{14}$N/$^{15}$N is observed towards different astrophysical sources, and current chemical models cannot reproduce it. With the advent of high angular resolution radiotelescopes it is now possible to search for N-fractionation at core scales. We present IRAM NOEMA observations of the J=1-0 transition of N$_{2}$H$^{+}$, $^{15}$NNH$^{+}$ and N$^{15}$NNH$^{+}$ towards the high-mass protocluster IRAS 05358+3543. We find $^{14}$N/$^{15}$N ratios that span from $\sim$100 up to $\sim$220 and these values are lower or equal than those observed with single-dish observations towards the same source. Since N-fractionation changes across the studied region, this means that it is regulated by local environmental effects. We find also the possibility, for one of the four cores defined in the protocluster, to have a more abundant $^{15}$NNH$^{+}$ with respect to N$^{15}$NNH$^{+}$. This is another indication that current chemical models may be missing chemical reactions or may not take into account other mechanisms, like photodissociation or grain surface chemistry, that could be important.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.